
Visitor design pattern
Behavioral design pattern that lets you separate
algorithms from the objects on which they
operate.

1

Tai Pham

2

Software Engineer

taipn@d.foundation

mailto:taipn@d.foundation

Agenda 1. Problem - Solution

2. What is the visitor design pattern

3. Applicability

4. Pros and Cons

5. Q&A

3

Problem

4

Geographic information?

● Export nodes to?

● XML

● PDF

● JSON

5

Geographic information?

6

Solution- Visitor design pattern
● The Visitor pattern suggests that you place the new behavior into a

separate class called visitor, instead of trying to integrate it into existing

classes. The original object that had to perform the behavior is now

passed to one of the visitor’s methods as an argument, providing the

method access to all necessary data contained within the object.

7

Structure

8

 The Visitor interface declares a set of visiting

methods that can take concrete elements of

an object structure as arguments. These

methods may have the same names if the

program is written in a language that supports

overloading, but the type of their parameters

must be different.

 Each Concrete Visitor implements several

versions of the same behaviors, tailored for

different concrete element classes.

Pseudocode

9
Exporting various types of objects into XML format via a visitor object.

Applicability
● Use the Visitor when you need to perform an operation on all elements of a complex object structure

(for example, an object tree).
The Visitor pattern lets you execute an operation over a set of objects with different classes by having a visitor
object implement several variants of the same operation, which correspond to all target classes.

● Use the Visitor to clean up the business logic of auxiliary behaviors.
 The pattern lets you make the primary classes of your app more focused on their main jobs by extracting all
other behaviors into a set of visitor classes.

● Use the pattern when a behavior makes sense only in some classes of a class hierarchy, but not in
others.
You can extract this behavior into a separate visitor class and implement only those visiting methods that
accept objects of relevant classes, leaving the rest empty.

1
0

Pros and Cons

● Open/Closed Principle. "Open for
extension" / "Closed for modification" You
can introduce a new behavior that can work
with objects of different classes without
changing these classes.

● Single Responsibility Principle. "A module
should be responsible to one, and only one,
actor." You can move multiple versions of
the same behavior into the same class.

1
1

Disadvantages

● You need to update all visitors each time a
class gets added to or removed from the
element hierarchy.

● Visitors might lack the necessary access to
the private fields and methods of the
elements that they’re supposed to work with

1
2

Reference

13

Resources & Reference links

● https://refactoring.guru/design-patterns/visitor

● https://refactoring.guru/design-patterns/visitor/typescript/exam

ple

●

https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor/typescript/example
https://refactoring.guru/design-patterns/visitor/typescript/example

Thank You

14

Q&A

15

